A tripartite paternally methylated region within the Gpr1-Zdbf2 imprinted domain on mouse chromosome 1 identified by meDIP-on-chip

نویسندگان

  • H. Hiura
  • A. Sugawara
  • H. Ogawa
  • R.M. John
  • N. Miyauchi
  • Y. Miyanari
  • T. Horiike
  • Y. Li
  • N. Yaegashi
  • H. Sasaki
  • T. Kono
  • T. Arima
چکیده

The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and, most recently, Zdbf2 which encodes zinc finger, DBF-type containing 2. In this study, we applied a novel methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method to genomic DNA from mouse parthenogenetic- and androgenetic-derived stem cells and sperm and identified 458 putative DMRs. This included the majority of known DMRs. We further characterized the paternally methylated Zdbf2/ZDBF2 DMR. In mice, this extensive germ line DMR spanned 16 kb and possessed an unusual tripartite structure. Methylation was dependent on DNA methyltransferase 3a (Dnmt3a), similar to H19 DMR and IG-DMR. In both humans and mice, the adjacent gene, Gpr1/GPR1, which encodes a G-protein-coupled receptor 1 protein with transmembrane domain, was also imprinted and paternally expressed. The Gpr1-Zdbf2 domain was most similar to the Rasgrf1 domain as both DNA methylation and the actively expressed allele were in cis on the paternal chromosome. This work demonstrates the effectiveness of meDIP-on-chip as a technique for identifying DMRs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic and transcriptional features of the novel human imprinted lncRNA GPR1AS suggest it is a functional ortholog to mouse Zdbf2linc

Long non-coding RNAs (lncRNAs), transcribed from the intergenic regions of animal genomes, play important roles in key biological processes. In mice, Zdbf2linc was recently identified as an lncRNA isoform of the paternally expressed imprinted Zdbf2 gene. The functional role of Zdbf2linc remains undefined, but it may control parent-of-origin-specific expression of protein-coding neighbors throug...

متن کامل

The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals.

Many loci maintain parent-of-origin DNA methylation only briefly after fertilization during mammalian development: Whether this form of transient genomic imprinting can impact the early embryonic transcriptome or even have life-long consequences on genome regulation and possibly phenotypes is currently unknown. Here, we report a maternal germline differentially methylated region (DMR) at the mo...

متن کامل

Delta-like and Gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12

The distal portion of mouse chromosome 12 is imprinted. To date, however, Gtl2 is the only imprinted gene identified on chromosome 12. Gtl2 encodes multiple alternatively spliced transcripts with no apparent open reading frame. Using conceptuses with maternal or paternal uniparental disomy for chromosome 12 (UPD12), we found that Gtl2 is expressed from the maternal allele and methylated at the ...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA

Parental genomic imprinting at the Igf2/H19 locus is controlled by a methylation-sensitive CTCF insulator that prevents the access of downstream enhancers to the Igf2 gene on the maternal chromosome. However, on the paternal chromosome, it remains unclear whether long-range interactions with the enhancers are restricted to the Igf2 promoters or whether they encompass the entire gene body. Here,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010